Exercices maths terminale

Exercices sur la forme algébrique d’un nombre complexe

Mise à jour le 19 décembre 2017 | Exercices maths terminale S  |  Signalez une ERREUR

Forme algébrique d’un nombre complexe avec des exercices corrigés de maths en terminale S avec sa partie réelle et imaginaire.

Exercice n° 1 :

Démontrer que les nombres complexes suivants sont égaux :

z=5i;z'=\frac{10+5i}{1-2i}

1. En calculant la différence z’-z.

2. En calculant le quotient \frac{z'}{z}.

Exercice n° 2 :

Ecrire sous forme algébrique le nombre complexe suivant :

z=\frac{3+6i}{3-4i}

Exercice n° 3 :

On donne z_1=-1+3i;z_2=4-i.

Ecrire sous forme algébrique les nombres complexes suivants :

a)\,z_1^2-2z_2\\b)\,z_1z_2^2\\c)\,\frac{z_1}{z_2}\\d)\,\frac{z_1}{z_2}\\\,e)\,\frac{1}{z_1}+\frac{1}{z_2}\\f)\,\,\frac{1}{z_1^2}+\frac{1}{z_2^2}

Exercice n° 4 :

Calculer la somme S=1+i+i^2+i^3+....+i^{2017}.

Exercice n° 5 :

On pose j=-\frac{1}{2}+i\frac{\sqrt{3}}{2}.

  1. Calculer j^2,j^3 puis j^n suivant les valeurs du nombre entier naturel n.
  2. Vérifier que 1+j+j^2=0.
  3. Calculer la somme S'=1+j+j^2+j^3+......j^{2017}+j^{2018}.

Exercice n° 6 :

P est le polynôme défini sur \mathbb{C} par P(z)=z^2-4z+5.

Vérifier que P(2+i)=0\,et\,P(2-i)=0.

Exercice n° 7 :

Le plan complexe est rapporté à un repère orthonormé direct d’unité graphique 2 cm.

On considère les points A,B,C et H d’affixes respectives : a=-3-i;b=-2+4i;c=3-i;h=-2.

1.a) Placer ces points sur une figure, qui sera complétée au fur et à mesure de l’exercice.

b) Montrer que V est le centre du cercle \xi circonscrit au triangle ABC. Préciser le rayon du cercle \xi.

c) Calculer, sous forme algébrique, le nombre complexe \frac{b-c}{h-a} .

En déduire que les droites (AH) et (BC) sont perpendiculaires.

2. Dans la suite de cet exercice, on admet que H est l’orthocentre du triangle ABC, c’est-à-dire le point d’intersection des hauteurs du triangle ABC.

a. On note G le centre de gravité du triangle ABC.

L’affixe du point G vérifie g=\frac{1}{3}(a+b+c).

Placer le point G sur la figure.

b) Montrer que le centre de gravité G, l’orthocentre H et le centre du cercle circonscrit au triangle ABC, noté V, sont alignés. Le vérifier sur la figure.

c) On note A’ le milieu de [BC] et K celui de [AH]. Déterminer la nature du quadrilatère KHA’V.

Remarque : dans un triangle, le centre de gravité, l’orthocentre et le centre du cercle circonscrit au triangle sont alignés sur une droite (d) appelée droite d’Euler.


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «exercices sur la forme algébrique d'un nombre complexe» au format PDF afin de pouvoir travailler en totale autonomie.

Les dernières fiches mises à jour


D'autres fiches que vous devriez consulter


Inscription gratuite à Mathématiques Web. Rejoignez les 24437 membres de Mathématiques Web, inscription gratuite.


Mathématiques Web

GRATUIT
VOIR
Revenir en haut de la page